3.7.41 \(\int \frac {x^5}{(1-x^3)^{4/3} (1+x^3)} \, dx\) [641]

Optimal. Leaf size=100 \[ \frac {1}{2 \sqrt [3]{1-x^3}}-\frac {\tan ^{-1}\left (\frac {1+2^{2/3} \sqrt [3]{1-x^3}}{\sqrt {3}}\right )}{2 \sqrt [3]{2} \sqrt {3}}+\frac {\log \left (1+x^3\right )}{12 \sqrt [3]{2}}-\frac {\log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}} \]

[Out]

1/2/(-x^3+1)^(1/3)+1/24*ln(x^3+1)*2^(2/3)-1/8*ln(2^(1/3)-(-x^3+1)^(1/3))*2^(2/3)-1/12*arctan(1/3*(1+2^(2/3)*(-
x^3+1)^(1/3))*3^(1/2))*2^(2/3)*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {457, 79, 57, 631, 210, 31} \begin {gather*} -\frac {\text {ArcTan}\left (\frac {2^{2/3} \sqrt [3]{1-x^3}+1}{\sqrt {3}}\right )}{2 \sqrt [3]{2} \sqrt {3}}+\frac {1}{2 \sqrt [3]{1-x^3}}+\frac {\log \left (x^3+1\right )}{12 \sqrt [3]{2}}-\frac {\log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^5/((1 - x^3)^(4/3)*(1 + x^3)),x]

[Out]

1/(2*(1 - x^3)^(1/3)) - ArcTan[(1 + 2^(2/3)*(1 - x^3)^(1/3))/Sqrt[3]]/(2*2^(1/3)*Sqrt[3]) + Log[1 + x^3]/(12*2
^(1/3)) - Log[2^(1/3) - (1 - x^3)^(1/3)]/(4*2^(1/3))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 57

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/b, 3]}, Simp[-L
og[RemoveContent[a + b*x, x]]/(2*b*q), x] + (Dist[3/(2*b), Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1/
3)], x] - Dist[3/(2*b*q), Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x] && PosQ
[(b*c - a*d)/b]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {x^5}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx &=\frac {1}{3} \text {Subst}\left (\int \frac {x}{(1-x)^{4/3} (1+x)} \, dx,x,x^3\right )\\ &=\frac {1}{2 \sqrt [3]{1-x^3}}-\frac {1}{6} \text {Subst}\left (\int \frac {1}{\sqrt [3]{1-x} (1+x)} \, dx,x,x^3\right )\\ &=\frac {1}{2 \sqrt [3]{1-x^3}}+\frac {\log \left (1+x^3\right )}{12 \sqrt [3]{2}}-\frac {1}{4} \text {Subst}\left (\int \frac {1}{2^{2/3}+\sqrt [3]{2} x+x^2} \, dx,x,\sqrt [3]{1-x^3}\right )+\frac {\text {Subst}\left (\int \frac {1}{\sqrt [3]{2}-x} \, dx,x,\sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}}\\ &=\frac {1}{2 \sqrt [3]{1-x^3}}+\frac {\log \left (1+x^3\right )}{12 \sqrt [3]{2}}-\frac {\log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}}+\frac {\text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2^{2/3} \sqrt [3]{1-x^3}\right )}{2 \sqrt [3]{2}}\\ &=\frac {1}{2 \sqrt [3]{1-x^3}}-\frac {\tan ^{-1}\left (\frac {1+2^{2/3} \sqrt [3]{1-x^3}}{\sqrt {3}}\right )}{2 \sqrt [3]{2} \sqrt {3}}+\frac {\log \left (1+x^3\right )}{12 \sqrt [3]{2}}-\frac {\log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.15, size = 126, normalized size = 1.26 \begin {gather*} \frac {1}{24} \left (\frac {12}{\sqrt [3]{1-x^3}}-2\ 2^{2/3} \sqrt {3} \tan ^{-1}\left (\frac {1+2^{2/3} \sqrt [3]{1-x^3}}{\sqrt {3}}\right )-2\ 2^{2/3} \log \left (-2+2^{2/3} \sqrt [3]{1-x^3}\right )+2^{2/3} \log \left (2+2^{2/3} \sqrt [3]{1-x^3}+\sqrt [3]{2} \left (1-x^3\right )^{2/3}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^5/((1 - x^3)^(4/3)*(1 + x^3)),x]

[Out]

(12/(1 - x^3)^(1/3) - 2*2^(2/3)*Sqrt[3]*ArcTan[(1 + 2^(2/3)*(1 - x^3)^(1/3))/Sqrt[3]] - 2*2^(2/3)*Log[-2 + 2^(
2/3)*(1 - x^3)^(1/3)] + 2^(2/3)*Log[2 + 2^(2/3)*(1 - x^3)^(1/3) + 2^(1/3)*(1 - x^3)^(2/3)])/24

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 3.77, size = 674, normalized size = 6.74

method result size
trager \(\text {Expression too large to display}\) \(674\)
risch \(\text {Expression too large to display}\) \(775\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(-x^3+1)^(4/3)/(x^3+1),x,method=_RETURNVERBOSE)

[Out]

-1/2*(-x^3+1)^(2/3)/(x^3-1)+1/2*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*ln((18*RootOf(RootOf(_Z^3
+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)^2*RootOf(_Z^3+4)^2*x^3+15*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z
^2)*RootOf(_Z^3+4)^3*x^3+6*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*x^3+5*RootOf(_Z^3+4)*x^3+21*(-
x^3+1)^(1/3)*RootOf(_Z^3+4)^2+42*(-x^3+1)^(2/3)-42*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)-35*Roo
tOf(_Z^3+4))/(x+1)/(x^2-x+1))-1/12*ln((18*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)^2*RootOf(_Z^3+4
)^2*x^3-12*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*RootOf(_Z^3+4)^3*x^3-18*RootOf(RootOf(_Z^3+4)^
2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*x^3+12*RootOf(_Z^3+4)*x^3+21*(-x^3+1)^(1/3)*RootOf(_Z^3+4)^2+42*(-x^3+1)^(2/3)+
42*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)-28*RootOf(_Z^3+4))/(x+1)/(x^2-x+1))*RootOf(_Z^3+4)-1/2
*ln((18*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)^2*RootOf(_Z^3+4)^2*x^3-12*RootOf(RootOf(_Z^3+4)^2
+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*RootOf(_Z^3+4)^3*x^3-18*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)*x^3
+12*RootOf(_Z^3+4)*x^3+21*(-x^3+1)^(1/3)*RootOf(_Z^3+4)^2+42*(-x^3+1)^(2/3)+42*RootOf(RootOf(_Z^3+4)^2+6*_Z*Ro
otOf(_Z^3+4)+36*_Z^2)-28*RootOf(_Z^3+4))/(x+1)/(x^2-x+1))*RootOf(RootOf(_Z^3+4)^2+6*_Z*RootOf(_Z^3+4)+36*_Z^2)

________________________________________________________________________________________

Maxima [A]
time = 0.71, size = 97, normalized size = 0.97 \begin {gather*} -\frac {1}{12} \, \sqrt {3} 2^{\frac {2}{3}} \arctan \left (\frac {1}{6} \, \sqrt {3} 2^{\frac {2}{3}} {\left (2^{\frac {1}{3}} + 2 \, {\left (-x^{3} + 1\right )}^{\frac {1}{3}}\right )}\right ) + \frac {1}{24} \cdot 2^{\frac {2}{3}} \log \left (2^{\frac {2}{3}} + 2^{\frac {1}{3}} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} + {\left (-x^{3} + 1\right )}^{\frac {2}{3}}\right ) - \frac {1}{12} \cdot 2^{\frac {2}{3}} \log \left (-2^{\frac {1}{3}} + {\left (-x^{3} + 1\right )}^{\frac {1}{3}}\right ) + \frac {1}{2 \, {\left (-x^{3} + 1\right )}^{\frac {1}{3}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="maxima")

[Out]

-1/12*sqrt(3)*2^(2/3)*arctan(1/6*sqrt(3)*2^(2/3)*(2^(1/3) + 2*(-x^3 + 1)^(1/3))) + 1/24*2^(2/3)*log(2^(2/3) +
2^(1/3)*(-x^3 + 1)^(1/3) + (-x^3 + 1)^(2/3)) - 1/12*2^(2/3)*log(-2^(1/3) + (-x^3 + 1)^(1/3)) + 1/2/(-x^3 + 1)^
(1/3)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 148 vs. \(2 (73) = 146\).
time = 2.67, size = 148, normalized size = 1.48 \begin {gather*} -\frac {2 \, \sqrt {6} 2^{\frac {1}{6}} \left (-1\right )^{\frac {1}{3}} {\left (x^{3} - 1\right )} \arctan \left (\frac {1}{6} \cdot 2^{\frac {1}{6}} {\left (2 \, \sqrt {6} \left (-1\right )^{\frac {1}{3}} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} - \sqrt {6} 2^{\frac {1}{3}}\right )}\right ) + 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} {\left (x^{3} - 1\right )} \log \left (2^{\frac {1}{3}} \left (-1\right )^{\frac {2}{3}} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} - 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} + {\left (-x^{3} + 1\right )}^{\frac {2}{3}}\right ) - 2 \cdot 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} {\left (x^{3} - 1\right )} \log \left (-2^{\frac {1}{3}} \left (-1\right )^{\frac {2}{3}} + {\left (-x^{3} + 1\right )}^{\frac {1}{3}}\right ) + 12 \, {\left (-x^{3} + 1\right )}^{\frac {2}{3}}}{24 \, {\left (x^{3} - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="fricas")

[Out]

-1/24*(2*sqrt(6)*2^(1/6)*(-1)^(1/3)*(x^3 - 1)*arctan(1/6*2^(1/6)*(2*sqrt(6)*(-1)^(1/3)*(-x^3 + 1)^(1/3) - sqrt
(6)*2^(1/3))) + 2^(2/3)*(-1)^(1/3)*(x^3 - 1)*log(2^(1/3)*(-1)^(2/3)*(-x^3 + 1)^(1/3) - 2^(2/3)*(-1)^(1/3) + (-
x^3 + 1)^(2/3)) - 2*2^(2/3)*(-1)^(1/3)*(x^3 - 1)*log(-2^(1/3)*(-1)^(2/3) + (-x^3 + 1)^(1/3)) + 12*(-x^3 + 1)^(
2/3))/(x^3 - 1)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{5}}{\left (- \left (x - 1\right ) \left (x^{2} + x + 1\right )\right )^{\frac {4}{3}} \left (x + 1\right ) \left (x^{2} - x + 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(-x**3+1)**(4/3)/(x**3+1),x)

[Out]

Integral(x**5/((-(x - 1)*(x**2 + x + 1))**(4/3)*(x + 1)*(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [A]
time = 1.73, size = 98, normalized size = 0.98 \begin {gather*} -\frac {1}{12} \, \sqrt {3} 2^{\frac {2}{3}} \arctan \left (\frac {1}{6} \, \sqrt {3} 2^{\frac {2}{3}} {\left (2^{\frac {1}{3}} + 2 \, {\left (-x^{3} + 1\right )}^{\frac {1}{3}}\right )}\right ) + \frac {1}{24} \cdot 2^{\frac {2}{3}} \log \left (2^{\frac {2}{3}} + 2^{\frac {1}{3}} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} + {\left (-x^{3} + 1\right )}^{\frac {2}{3}}\right ) - \frac {1}{12} \cdot 2^{\frac {2}{3}} \log \left ({\left | -2^{\frac {1}{3}} + {\left (-x^{3} + 1\right )}^{\frac {1}{3}} \right |}\right ) + \frac {1}{2 \, {\left (-x^{3} + 1\right )}^{\frac {1}{3}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="giac")

[Out]

-1/12*sqrt(3)*2^(2/3)*arctan(1/6*sqrt(3)*2^(2/3)*(2^(1/3) + 2*(-x^3 + 1)^(1/3))) + 1/24*2^(2/3)*log(2^(2/3) +
2^(1/3)*(-x^3 + 1)^(1/3) + (-x^3 + 1)^(2/3)) - 1/12*2^(2/3)*log(abs(-2^(1/3) + (-x^3 + 1)^(1/3))) + 1/2/(-x^3
+ 1)^(1/3)

________________________________________________________________________________________

Mupad [B]
time = 4.85, size = 117, normalized size = 1.17 \begin {gather*} \frac {1}{2\,{\left (1-x^3\right )}^{1/3}}-\frac {2^{2/3}\,\ln \left (\frac {{\left (1-x^3\right )}^{1/3}}{4}-\frac {2^{1/3}}{4}\right )}{12}-\frac {2^{2/3}\,\ln \left (\frac {{\left (1-x^3\right )}^{1/3}}{4}-\frac {2^{1/3}\,{\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{16}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{24}+\frac {2^{2/3}\,\ln \left (\frac {{\left (1-x^3\right )}^{1/3}}{4}-\frac {2^{1/3}\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{16}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{24} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/((1 - x^3)^(4/3)*(x^3 + 1)),x)

[Out]

1/(2*(1 - x^3)^(1/3)) - (2^(2/3)*log((1 - x^3)^(1/3)/4 - 2^(1/3)/4))/12 - (2^(2/3)*log((1 - x^3)^(1/3)/4 - (2^
(1/3)*(3^(1/2)*1i - 1)^2)/16)*(3^(1/2)*1i - 1))/24 + (2^(2/3)*log((1 - x^3)^(1/3)/4 - (2^(1/3)*(3^(1/2)*1i + 1
)^2)/16)*(3^(1/2)*1i + 1))/24

________________________________________________________________________________________